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The frequency dependence of the dielectric response of solids shows an apparently 
bewildering variety of patterns, virtually none of which corresponds to the classical 
Debye behaviour. However, a wide ranging critical analysis of the existing wealth of data 
shows that the dielectric loss obeys power-law dependences on frequencies, both below 
and above any loss peaks that may be present. This corresponds to power-law depen- 
dences on time under step-function excitation and it applies completely generally 
regardless of  the detailed physical and chemical nature of the materials in question and 
also applies equally to dipoles, ions and hopping electrons as the polarizing species. 
Moreover, the power-law responses persist down to the lowest temperatures in the 
milliKelvin range, thus proving the importance of non-thermal transitions. The power 
laws are characterized by exponents in the range -+ 1 and they cover as special cases the 
complete range of the observed types of response, from virtually frequency-independent 
"f lat" losses often seen in low-loss materials, through various forms of asymmetric loss 
peaks to strongly dispersive behaviour in which both the real and the imaginary com- 
ponents of the susceptibility vary almost inversely with frequency. The "universality" 
of the power law strongly suggests the dominance in all materials of a common mech- 
anism of dielectric relaxation and this is found in many-body interactions which provide 
a model capable of explaining the totality of the observed responses of solids, including 
both the frequency- and the temperature-dependence. In this interpretation, the classical 
one-particle Debye law represents but a singularity in a more general behaviour and is 
usually overshadowed by the new many-body mechanisms. 

1. Introduction 
The long-standing application of dielectric materials 
in many branches of electrical and electronic tech- 
nology has led to a corresponding interest in the 
basic properties of  these materials and, in par- 
ticular, in the transient response of the polarization 
which covers as many as fifteen decades of time or 
frequency below the microwave region. A very 
wide range of materials has been investigated in a 
very wide range of temperatures extending from 
the highest that the materials may withstand down 
to cryogenic temperatures of 1 K and below. The 
wealth of experimental data may therefore be said 
to be truly overwhelming and the classification 
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and characterization of these data present a 
challenge to those trying to understand the behav- 
iour of dielectrics. It has to be admitted, however, 
that the theoretical understanding of the processes 
in question is rather primitive, being often confined 
to purely speculative models or resting on formal 
mathematical arguments without foundation in 
physical reality. 

This situation is made even more difficult on 
account of the fragmentation of dielectric studies 
into smaller specialist areas which have little in 
common in terms of methods of analysis and 
accepted models. In addition, the materials them- 
selves are often poorly  characterized in terms of 
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structure and composition and the various patterns 
of response appear to elude rational classification. 

The present review outlines a recent attempt to 
produce an empirical classification of various types 
of dielectric response, based on the widest possible 
range of materials. This attempt appears to have 
been very successful in demonstrating the existence 
of a remarkably general or "universal" form of 
dielectric response which is only slightly affected 
by extrinsic factors such as impurities and struc- 
tural defects and which leads to the inescapable 
conclusion that an overriding physical principle 
is at play which is applicable to all solid dielectrics 
regardless of their physical and chemical properties. 
The empirically observed universality of response 
is then shown to lead to a very natural theoretical 
interpretation in terms of many-body interactions 
which are expected to apply in all these different 
systems. 

Here, the review ~ be confined to what may 
be described as the "low frequency" region in which 
"viscous" responses dominate and an arbitrary 
upper limit will be placed at a frequency of the 
order of 10 to 100 GHz. At still higher frequencies, 
in the THz range and above, phonon and lattice 
vibrational effects begin to dominate the response, 
also molecular and electronic excitations as well as 
interial and plasma phenomena come to the fore. 
All these processes are "strong" in the sense that 
their presence modifies very considerably the 
behaviour which is evident at the lower frequencies 
under consideration here and it would be very 
confusing to try to resolve their respective contri- 
butions. By contrast, it will be argued that the 
dominant processes in the low frequency region 
are many-body interactions which may be described 
as "weak" interactions. It is worth noting also that 
the frequency region extending for at least fifteen 
decades below our upper limit contains most of 
the frequencies of direct interest to electrical and 
electronic engineering, except for opto-electronic 
applications. 

The review begins with a few basic concepts 
relating to dielectric polarization and this is 
followed by a brief description of the various, 
currently accepted, theoretical approaches to the 
observed strong departures of the response from 
the Debye model which appears to dominate much 
of dielectric thinking despite its manifest disagree- 
ment with experimental data. An outline of a new 
classification of all types of dielectric response 
will be given, showing typical examples of the 
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various categories and the review will conclude 
with a presentation of the recently proposed many- 
body theory which promises to provide a unified 
model within which the entire range of experi- 
mental data may be interpreted. 

At the start of the presentation it is necessary 
to clarify one essential point of principle relating 
to the "philosophy" of the approach taken here. 
Dielectric behaviour, especially taken over such a 
wide range of frequencies and materials as adopted 
here, is undoubtedly full of confusing complexities. 
Dielectric loss peaks abound whose shapes vary 
and whose overlaps in frequency seem to doom 
to failure any rational attelnpt at classification. 
In the face of this situation, one possible approach 
is to accept the complexity and to derive suitable 
empirical functions to model it, without attempt- 
ing to produce a rigorous justification in terms 
of fundan~ental processes. This is the approach of 
the distributions-of-relaxation-times school, about 
which more will be said later. No other simple 
approach can account for the observed COlnplexity 
in any significant range of frequencies. 

However, the fundamental principle advanced 
in tiae present approach is that the dielectric 
response is basically remarkably simple when 
seen in terms of certain elementary "universal" 
responses. It will be pointed out that there exist 
many well documented examples of such universal 
behaviour covering the entire available frequency 
range, sometimes up to ten decades and that these 
simple examples constitute existence theorems for 
tlle universal response. Once such simple behaviour 
has been diagnosed and recognized as physically 
meaningful, more complex types of behaviour are 
easily understood in terms of a superposition of 
two or sometimes more such simple responses. 

It is not claimed that this proposed universal 
approach can explain the actual behaviour of all 
materials in the entire frequency range in terms of 
a singie mechanism. Such a claim would be utterly 
wrong and is one we have never made. It can be 
claimed however, that most materials show two, or 
at most three, partially overlapping universal mech- 
anisms in the entire range of frequencies in which 
measurements are available; each of these mech- 
anisms being understandable in terms of simple 
physical processes. The ability to analyse the 
apparently complex behaviour of dielectrics 
represents, in our submission, a decisive step 
forward towards the complete understanding of 
the dielectric response. In this sense, the general 
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Figure 1 A general classification of all observed types of dielectric response in the entire range of solids. The upper 
diagrams represent the plots of log X'(~o) --log to as the chain-dotted lines and of log x"(to) --log to as solid lines. 
They range from the ideal Debye response on the far right, which is very seldom, if ever, found in solids, through the 
c~ and fl peaks in dipolar materials, the '~ peaks observed in p - n  junction generation/trapping processes and in 
some mechanical loss peaks, and on to the universal dependence for charge carrier systems. The limiting forms of 
behaviour are represented by the strong low frequency dispersion for which n -* 0 and by the "flat" frequency response of 
lowqoss materials for which n -~ 1. The lower diagrams represent the corresponding complex • plots. The various types 
of materials giving the respective responses are indicated, together with the principal mechanisms. See also [4, 5, 35 ]. 

classification of Fig. 1 is intended as a key to the 
understanding of more complex responses and 
not as a claim that all actual responses are as 
simple as those shown. 

Some of our critics advance the proposition 
that merely to admit the existence of two or three 
overlapping universal mechanisms is to overthrow 
the very basis of our universal mechanism. This 
is neither fair nor reasonable and it could be 
compared with the statement that if two Debye 
mechanisms can co-exist, then the Debye mech- 
anism is not valid at all! 

2. Basic dielectric concepts 
The dielectric response of any material may be 
defined in terms of the time dependence of the 
depolarization current following a sudden removal 
of a steady polarizing field, Eo, 

i ( t )  = dP/dt  = eoEof ( t ) ,  (1) 

where P(t) is the time-dependent polarization, eo 
is the permittivity of free space and f ( t ) i s  the 
dielectric response function. Alternatively, the 
response may be characterized in terms of the fre- 
quency dependence of the complex dielectric 

susceptibility X(co) = X' (co) - - ix" (co)  which is the 
complex Fourier transform of f ( t )  and co is the 
radian frequency. The dielectric permittivity e(co) 
of a material consists of the free space contri- 
bution and of the sum of all susceptibilities for 
the physical mechanisms operating in the material. 
The real and imaginary components of X(co) and 
of e(co) are related by the Kramers-Kronig 
relations which are valid for all responses which 
are linear in the applied electric field. 

The archetypal form of dielectric response is 
that of the classical Debye model for which the 
frequency and temperature dependence of the 
susceptibility is given by 

A A 

X(CO, T) - i + ico'c 1 + ico'c= exp (W/kT)  ' 

(e) 

where ~- is the relaxation time which is often 
thermally activated with an energy W. The dielectric 
loss X"(co) represents a symmetric peak at cop = 1/r 
with a width at half-height XD = 1.144 decades in 
the logarithmic frequency representation. The 
response function is f ( t )  ~ exp (-- cop t). 
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The following physical processes lead to the 
prediction of the ideal Debye response: 

(i) identical non-interacting dipoles "floating" 
in a viscous medium with thermal randomization 
[1]; 

(ii) identical non-interacting dipoles "jumping" 
between preferred orientations with respect to the 
positions of the nearest neighbours; 

(iii)a set of non4nteracting charges, each 
hopping between identical potential double wells 
[2,31; 

(iv) a series combination of a resistance R and a 
capacitance C; 

(v) the generation-recombination process for 
electron-hole pairs on a simple recombination 
level in a semiconductor. 

The loss peak frequency, cop, is related to the 
viscosity r/ by cop = 2rlkT in (i); is related to the 
natural frequency of thermally activated hopping 
in (ii) and (fii); is related to the product 1/RC in 
(iv) and is related to the recombination time in (v). 

While mechanism (i) is clearly not applicable in 
solids, except possibly for some solid rotator 
phases, mechanisms (ii) and (iii) are classical solid- 
state processes. Mechanism (iv) would be expected 
to apply where a Schottky barrier or other chemical 
barrier exists in series with a resistive bulk medium, 
while (v) would be expected to be seen in semi- 
conductor p - n  junctions. 

It is an undisputed experimental fact that the 
dielectric response of the overwhelming majority 
of solids does not follow the Debye relations and 
in many cases the departure is such that there is no 
resemblance to the ideal, so that the simple Debye 
model cannot possibly apply to these materials 
[4, 51. 

3. Previously accepted theories 
This evident discrepancy has long been recog- 
nized and as early as the turn of the century von 
Schweidier formulated the power law (see 
Equation 10) as the general form of time-domain 
relaxation, replacing the exponential law corre- 
sponding to the Debye process. This power law is 
known as the Curie-yon Schweidler law. The 
existence of these serious departures from the 
Debye law has given rise to the development of a 
range of theoretical treatments seeking to provide 
explanations of the observed behaviour in terms 
either of modified Debye-like models or of other 
simple mechanisms [6]. The principal approaches 
may be listed as follows: (a) distributions of 
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relaxation times (DRT's); (b) distributions of 
hopping probabilities; (c) correlation function 
approaches; (d)local field theories; (e) diffusive 
boundary conditions (Warburg impedance); (f) 
interfacial phenomena (Maxwell-Wagner)effects; 
(g) transport limitation at boundaries. 

Of these, DRT's are the simplest and the least 
sophisticated and postulate the required form of 
DRT to explain virtually any result of X(~), but 
this approach does not prove anything [7-11].  
A few ab initio calculations have been made [12] 
for well-defined crystal structures, e.g. thio-urea, 
obtaining a reasonably good fit with experimental 
data in the GHz range. No comparable calculations 
appear to have been made at lower frequencies and 
wider frequency intervals. The most serious objec- 
tion to the DRT approach is the broad similarity 
of the dielectric response of most materials, which 
is the central point of the present review, and this 
would require an "integrating" approach to DRT's 
showing why widely different materials should 
have similar DRT's. No such attempt appears to 
have been made. Moreover, low-temperature behav- 
iour of dielectrics is equally incompatible with any 
form of thermally-activated response, as DRT's 
invariably are. 

One of the most serious conceptual difficulties 
associated with the DRT philosophy is the virtual 
impossibility of furnishing a positive proof that a 
particular dielectric response does or does not 
involve a distribution. Among the indirect argu- 
ments may be cited the generally observed fact, 
known under the name of compensation rule, that 
where a physical parameter such as a relaxation 
time or the electrical conductivity can be expressed 
in the form implied by Equation 2, with a wide 
range of values, then the pre-exponential factor, 
~-~ in our case, and the activation energy are 
related by the equation 

r~ = a exp (W/kT1), (3) 

where T1 and a are suitable constants. This means 
that the distribution must necessarily involve a 
variation of both the pre-exponential factor and 
the activation energy. This, however, would 
necessarily require a changing shape of the spectral 
response with temperature, since different parts 
of the frequency spectrum, corresponding to 
different relaxation times, move with different 
activation energies. This is clearly not the case in 
many situations in which the time-temperature 
superposition principle is applicable, e.g. in most 
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Figure 2 A compilation of di- 
electric loss data for a range of 
materials, solids as well as 
liquids, plotted as log e"(w) 
against log w, normalized for 
different temperatures and dis- 
placed vertically and horizon- 
tally for clarity. Temperatures 
are indicated at the correspond- 
ing lowest frequency points: 
(at correspond to the lower tem- 
perature peaks, and (b) to the 
higher temperature. Slopes corre- 
sponding to m = 1 are indicated 
and so are the Debye responses. 
The sources of the data are indi- 
cated. The logarithmic plots and 
the normalizations were made by 
R. M. Hill who kindly stipp~ied 
his diagrams. 

examples quoted in Fig. 2. Further discussion 
o f  this topic and additional references are given 
by Jonscher [13] .  

As regards the various means o f  deriving the 
DRT's from the experimentally observed behaviour, 
and there are many such methods [6] ,  it is noted 
that this procedure cannot possibly lead to the 

derivation of  anything more specific or more 
precise that the original information obtained 
from the experiment. Thus it is wrong to argue, as 
some people do, that the DRT represents a more 
sensitive means of  characterizing the dielectric 
behaviour than the original data. 

The approach (b) is essentially DRT in the 
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context of hopping charges [14-18] and similar 
arguments apply. Once again, however, despite 
the high mathematical sophistication, there is no 
independent check onthe  physical plausibility of 
the postulated distributions. 

Correlation functions (c) are mathematically 
sophisticated methods [19-24] of following the 
time evolution of the orientation of a dipole, but 
the basic limitation is that, while it is possible to 
describe simpler forms of response, taking into 
account many-body interactions requires the 
summation of several terms in a series which is not 
well convergent and the mathematical difficulties 
of obtaining a realistic solution rapidly become 
prohibitive. There is therefore a tendency to make 
it into an "input-output" theory, where one puts 
in functions which in the end give the desired 
result, without being able necessarily to justify the 
use of these functions. 

Local field theories attempt to describe the 
forces acting on dipoles [25] in terms of inter- 
actions with neighbours and they were initially 
introduced by Clausius and by Mossotti in the 
1870's to describe the static response. Unfortu- 
nately, in the dynamic response they are capable 
of describing only the relatively small departures 
from the ideal Debye behaviour and to that 
extent they do not apply to the majority of 
dielectric data. 

The diffusive boundary conditions (e), as 
developed initially by Warburg in 1898 for the 
case of the interface between a liquid electrolyte 
and a metallic electrode, can be modelled by a 
distributed R - C  network and have the charac- 
teristic frequency dependence [26-28] 

X'(Co) = X"(co) cc co -1'2 (4) 

with f ( t )  ~ t -1/2. This represents the first decisive 
break with Debye response and goes in the right 
direction but its limitations are that it requires the 
presence of two types of charges of opposite signs 
to maintain neutrality in a diffusive medium. 
Moreover, the particular exponent �89 is found only 
exceptionally in practice and the model itself is 
quite inflexible in this respect. 

An ingenious attempt to introduce diffusion 
into dipolar processes seeks to "trigger" the 
dipolar transitions by the diffusive motion of some 
"defects" in the material [29, 30] although the 
physical process in question is far from clear and 
the end result no more useful that in the straight 
diffusion. 
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The various Maxwell-Wagner models of inter- 
facial polarization (f), [31,32], represent basically 
an extension of the R - C  network to a whole 
distribution, thus representing an unverifiable 
hypothesis capable of explaining in principle, any 
frequency dependence of dielectric polarization. 

Transport limitation at boundaries (g) through 
selective transmission of certain carrier species, 
mainly ionic, has been developed in a series of 
papers by Macdonald [33, 34] discussing ionic 
conductors with a high degree of mathematical 
sophistication. While it is capable of modelling 
barrier responses in highly conducting electrolytes, 
it cannot explain strong departures from Debye 
behaviour found in many dielectrics, including 
ionic conductors. Once again there are many 
disposable parameters in the theory which cannot 
be verified independently, making the theory 
essentially conjectural. 

This brief review of the currently accepted 
theories in various branches of the science of 
dielectrics suggests that those theories which 
postulate well defmed physical models, in par- 
ticular (e) and possibly (g) and (d), are incapable 
of accounting for the majority of experimental 
facts, while those that do succeed to "fit" the data 
tend to rely on unverifiable assumptions. 

4. The need for an alternative approach 
If it were a fact that the experimentally observed 
departures from the Debye model behaviour in 
various classes of materials were randomly irregular, 
then there would be little justification for going 
beyond the currently available theories, each of 
which may have some plausibility in its own par- 
ticular field, such as low-loss polymers, high- 
density electrolytes, amorphous semiconductors 
and so on. This would be even more so if these 
very different materials showed completely 
different types of dielectric responses unrelated 
in any way to one another. It would be further 
objected that many data are of poor quality, 
refer to indifferently characterized materials and 
are available in a narrow frequency range, so that 
there is little point in developing an all-embracing 
theory generalizing the approach. 

It is suggested, however, that the situation is 
far more favourable than this, and that the actually 
available range of up to 15 decades below the micro- 
wave region offers unrivalled scope for presentation 
of data and that the actual responses of all these 
very different materials show remarkable common 



features, or "universality" of frequency depen- 
dence, despite all the acknowledged shortcomings 
of the materials in question. 

Most significantly of all, the laws of universal 
behaviour determined on the empirical basis 
are neither arbitrary nor inexplicable, but they 
point to a very meaningful physical mechanism 
which is uniquely capable of explaining the entire 
range of experimental data, including very low- 
temperature behaviour and the response of the 
low-loss materials. The case for a completely fresh 
approach to the entire theory of dynamic dielectric 
responses rests, therefore, on the synoptic view of 
the totality of dielectric responses leading to a 
theoretically meaningful universality. Therefore a 
representation of the synoptic classification of 
response types is given. 

5. The empirical classification of response 
types 

Fig. 1 shows this classification, beginning with the 
ideal Debye response on the far right. It is noted 
that this is hardly ever seen in practice and this 
is a serious assertion which often provokes strong 
reactions. It is suggested, however, that where data 
of sufficient quality exist, it is possible to show 
significant departures from the Debye law, for 
which X"(CO) cc CO-1 and X'(co) = 6o -2 beyond the 
loss peak frequency, whereas the slightest departure 
from Debye means that • = X'(co) c: 6o -1 + ~ 
where K ~ 1. This is a very sensitive test [36, 37]. 
Certainly by that test, water and ice are not Debye 
systems. 

5.1. Loss peaks in dipolar materials 
The overwhelming weight of experimental evidence, 
when represented in the form of a log X" --log co 
plot, is that the empirical form of loss peaks may 
be approximated by the expression [36, 38] 

A x"(co) = (5) 
((O/&)p) - m  -[- (gD/COp) x - n  

with 

0 <  ( 1 - - n  } < 1. (6) 

while the real part of the susceptibility follows the 
relations 

• = co "-1 for co >> cop 
and (7) 

X'(co) = constant for co ~ cop. 

Fig. 2 shows a collection of data for a range of 

polymers, normalized for different temperatures 
to bring the peaks into coincidence. These peaks 
comprise both the so-called a and /3 peaks, the 
former being found above the glass transition 
temperature, the latter below. While the widths 
and the temperature dependence of the loss 
peak frequency are different in the two regimes 
[38-40],  Equations 5 and 7 are valid. It should be 
pointed out that any departures from the straight- 
line plots may be understood in terms of overlap 
of some other mechanism; there are certainly very 
many examples where the power law is obeyed 
rigorously over many decades of frequency. 

The selection of peaks shown in Fig. 2 refer to 
systems in which the variation of temperature does 
not bring about any change in the shape of the loss 
spectrum: this is referred to as the principle of 
frequency-temperature superposition, or the 
equivalent time-temperature superposition. While 
there are many such systems, equally there are 
others with which the shape of the spectral 
response changes with varying temperature, usually 
in the sense of decreasing width of the peaks with 
increasing temperature. This type of behaviour is 
found among some of the examples in Fig. 2 
where the same material is shown in both diagrams, 
e.g. cyclohexyl chloride in polystyrene and also 
methyl heptanol, but in these cases the change 
of shape occurs abruptly at the glass transition. 
However, there are also examples in which the 
slope changes gradually with temperature indicating 
a continuously changing structure of the system. 

Fig. 3 gives the exponents m and (1 -- n) in the 
form of the plot for one hundred different dipolar 
materials, solids as well as liquids [36, 41]. In this 
diagram, the ideal Debye response corresponds to 
the top right corner, while the empirical Cole- 
Cole [42] and Fuoss-Kirkwood [43] expressions 
corresponding to symmetric loss peaks in log co 
representation fall on the diagonal, while the top 
side represents the asymmetric peaks for which the 
Cole-Davidson expression [44], may be used, 
giving m = 1. 

It is interesting to note that none of these 
empirical formulae fit the results very well, except 
the Cole-Davidson expression which relates, for 
the most part, to experimental points correspond- 
ing to very high frequencies and the significance of 
this will be seen later in the theoretical discussion. 
The other well-known empirical expression due to 
Williams and Watts [45] does not fit the data 
either. The general conclusion from this graph is 
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Figure 3 The representation of the dielectric response of 
one hundred dipolar materials, solids as well as liquids, in 
the form of the plot of the exponents rn against 1 -- n in 
the empirical expression, Equation 5. Each material is 
represented by a circle with the number referring to the 
index to be found in the original reference by Hill [4]. In 
addition, acoustic absorption data aIe represented by tri- 
angles and mechanical modulus data by squares. The 
Debye response is represented by the point "D ' ,  the 
dotted diagonal corresponds to symmetric peaks given by 
the Cole-Cole, Fuoss-Kirkwood and Williams-Watts 
empirical expressions. The top side represents the empiri- 
cal Cole-Davidson expression. 

that the exponents m and n are uncorrelated and 
that they must therefore represent independent 
physical mechanisms [36]. 

There are very many other examples of dielectric 
loss peaks arising in dipolar materials other than 
polymers and here some examples will be men- 
tioned without showing the data. Among materials 
showing near Debye responses may be mentioned 
Er-doped CaF2 [37, 46], the "giant dispersions" 
observed in many ferroelectrics at GHz frequencies 
[47], liquid crystals parallel to, but not normal 
to, the orientation of the molecules [48], certain 
high purity p - n  junctions [49]. There are, of 
course, many examples of Debye-like behaviour 
arising from the series R - C  configuration already 
mentioned and it is not proposed that they are 
discussed here. Broader loss peaks are found in 
glasses [50-52],  in many p - n  ]unctions [49, 53], 
in polymers at cryogenic temperatures [54-57],  
electrolytic capacitors [58] and many others. 
There are many examples of extremely broad loss 

2044 

peaks, with half-widths of four decades or more, 
among which may be mentioned suprasil glass at 
temperatures below 4 K [59] and various polymers 
at 4 K which are almost flat [57, 60]. The advan- 
tage of low-temperature measurements is that they 
are completely free of the disturbing influence of 
direct current conduction which tends to mask the 
low-frequency response at higher temperatures; 

As a general observation it may be said that 
loss peaks are associated with dipolar systems in 
which the dipoles may be of molecular origin or 
may arise from "closely coupled" pairs of defects 
of opposite signs, such as may be found in doped 
ionic crystals. In particular, an anisotropic system 
may behave as a conductor in one direction and as 
a dipolar dielectric in another: an example is 
single-crystal sodium/3-alumina [61] where a pro- 
nounced peak is observed in the direction normal 
to the highly conducting planes. 

5.2. The dielectric response of 
charge carriers 

A clear distinction tends to be made in dielectric 
literature between the dipolar responses which give 
rise to loss peaks, on the one hand, and the effect 
of charge carriers which result in purely direct 
current (d.c.) conductivity, %,  on the other hand. 
The effect of the latter is to add a singularity at 
zero frequency which tends to mask the low fre- 
quency "proper" dielectric behaviour by a term 
of the form Oo/~O in X"(w), while leaving the real 
part of permittivity unaffected. Such a distinction 
is certainly valid in the case of "free" electrons and 
holes in crystalline semiconductors, which move in 
a quasi-free motion between collisions and cover 
mean free paths of many interatomic spacings. 
These charge carriers, which are also responsible 
for the conductivity of metals, show a frequency- 
independent ao at least up to the frequency corre- 
sponding to the reciprocal free time between 
collisions, beyond which the conductivity decreases 
as (,.~-2. 

A completely different situation arises,however, 
in those many solids in which a finite electrical 
conductivity is due to hopping motions of charges, 
such as localized electrons in strongly disordered 
semiconductors and all ionic charges in all materials. 
These charges execute rapid hopping motions 
between sites which may be determined by local- 
ized defects in the solid or may be due to the 
very presence of the charge itself, as in the case 
of polarons. The important feature is that the 
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Figure 4 The compilation of a.c. conductivity data for a 
range of materials arranged on a common log f basis (in 
Hertz) but displaced vertically along the log o axis for 
clarity. Data sets denoted by one letter are on a corn- 

mon log o scale. (a) Single-crystal silicon in the impurity 
hopping range by electrons at (bottom to top) 3.0, 4.2, 
8.0 and t2.0 K [62]; (b) single-crystal #-alumina at 77 
and 87 K - a classic fast-ion conductor by Na + ion 
movement [63] ; (c) glow-discharge deposited amorphous 
silicon in the temperature range 84 to 295 K [64]; (d)a 
range of chalcogenide glasses at 293 K, top to bottom: 
Sb2Ss, SbsoAsloS60, Sb20As20S60, As2Ss, Sb~oAs30S60 
[65]; (e) single-crystal anthracene at 294K with 1M 
saline solution as contact -- two sets of measurements are 
shown (not resolvable on the scale of the present diagram) 
[66]; b e) single-crystal anthracene (-- • -- • --) and 
evaporated fl-carotene ( . . . . .  ) at 294K [67]. The two 
sets of data are on corresponding log a scale, showing the 
close similarity of the results in the a.c. range, with 
significant departures in the d.c. levels. These results show 
the superposition of a very shallow peak at 106 Hz with 
an underlying trend a = ~; (g) trinitrofluorinone-polyvinyl 
carbazole (TNF PVK) [68]; (h) three glasses (i) 50 P2Os- 
50 FeO, (ii) 50 P2Os-40 FeO-10 CaO, (iii) 50 P20~-25 
FeO-25 CaO: room temperature [69]; (i) 80 V2Os-20 
P~Os glass at three temperatures [70]; (j) evaporated 
amorphous SiO x (silicon monoxide) in the range of tem- 
perature (bottom to top) 211 to 297K [71]; (k) stearic 
acid 9-layer film between A1 and Au electrodes in the 
dark (uu) and in the presence of ultra-violet light (+ +) 
[72]; (l) three amorphous samples (top to bottom As2Se3, 
Se and As2S 3 . The measurements, taken at 300K are 
believed to be those of the bulk material and not to be 
influenced by the electrodes [73]; (m)two samples of 
As2S % at room temperature [74] extending to far- 
infra-red frequencies and showing a steeply rising o~ 2 
region above 10 GHz, characteristic of lattice vibrational 
processes [4]. 

carriers spend most  o f  the t ime in these localized 

sites, the transitions themselves being very rapid 
in comparison.  In the l imit  of  two-centre hopping, 

where the charges are each confined to two centres 
only,  the situation is physically indistinguishable 
from the dipolar situation�9 As the probabil i t ies of  
further hopping transitions increase, the mot ion 

in a low frequency electric field tends to include 
an increasing component  o f  directed drift  super- 
imposed on the rapid to-and-fro jumps which are 
present in thermal equilibrium. 

The study o f  the frequency dependence o f  the 
electrical conduct ivi ty became popular  in the 

context  o f  amorphous and glassy semiconductors 
which have been receiving a large volume o f  atten- 
t ion recently.  In these materials the alternating 
current (a.c.) conduct ivi ty is normally expressed 
in the form of  a sum of  the d.c. contr ibut ion 
and the "true a.c." component  which is directly 
related to the dielectric loss 

o ( ~ )  = ao + ~e" (~ ) .  (8) 

It  became known that  the a.c. component  of  a(co) 

corresponded to a power-law frequency depen- 

dence [3 ,104]  

e"(co) o: 60 " -1  for 0.6 < n < 1 (9) 

and this type o f  frequency dependence became 
accepted as a "p roof"  of  the applicabil i ty o f  the 

electronic hopping mechanism. However, this view 
was arrived at in apparent  ignorance of  the fact 
that exact ly the same power law applies to ionic 
conductors and is also obeyed above the loss 
peak frequency in dipolar solids, Equation 6. 
Fig. 4 shows a compilat ion of  the conductivity 

data for a range of  materials, some o f  which are 
clearly electronic conductors,  (a), (c), (d), (g), (h), 
( j )  and (l);  (b) is a classic example of  an ionic 
conductor,  while the others have at least a strong 
contr ibut ion from dipolar mechanisms. The under- 
lying t rend corresponding to Equation 9 is clearly 

visible, while the low-frequency response tends to 
a frequency independent  conductivity which 
would represent d.c. I t  is clear, however, that  the 
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Figure 5 The compilation of the data for 
the a.c. conductivity of Fig. 4 on a com- 
mon scale of log a(~2 cm) -~ showing the 
relatively narrow range of a.c. conductivity 
for a very wide range of materials. The 
upper and lower sloping chain-dotted lines 
correspond, respectively, to dielectric loss 
• = 10 and 10 -3, independent of fre- 
quency [5 ]. 

saturation of a(co) at low frequencies is by no 
means complete and a definite small slope is 
clearly discernible in some cases. This point will be 
returned to later. 

What is even more significant, however, is the 
fact that the absolute values of o(co) fall in a 
remarkably narrow range for all these very different 
materials, as is evident from Fig. 5, suggesting 
strongly that some very general mechanism is 
common to all these systems. 

The power law of Equation 9 is seen in a wide 
range of ionic conductors, especially the class 
known as "fast" ionic conductors which are 
characterized by relatively high ionic mobilities. 
The generally accepted method of presentation of 
these data is in the form of a complex impedance 
plot which gives typically an inclined circular arc, 
sometimes followed at low frequencies by an 
inclined "spur", the former corresponding to the 
"bulk" and the latter to some "barrier" response. 
It has been shown [75-78] that this behaviour 
is exactly equivalent to the power law, Equation 9, 
with very similar values of the exponent n to those 
in the electronic mechanism. It is remarkable in 
this connection, that the dielectric response of the 
relatively conducting bulk is characterized by a 
similar type of frequency dependence as the much 
more insulating barrier region; they correspond to 
the same basic "lattice" but with and without the 
prevailing ionic charge carriers, respectively. 

The question naturally arises as to what is the 
relation between the d.c. and a.c. components of 
the conductivity in hopping systems [79] and, 
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while it is difficult to generalize, it may be said 
that in materials with dipole dominated polariz- 
ation there is clearly no relation, while in strongly 
carrier dominated materials there must be some 
relation in the sense of a monotonic increase of 
the a.c. component with the d.c. conductivity. 
However, it is clear from Fig. 5 that this relation, 
if  it exists, is much less rapid than linear and there 
is also the evident complication that the d.c. 
conductivity is normally much more strongly 
temperature dependent than the a.c. component. 

Injection and exclusion of charge carriers plays 
an important role in determining the level o f  
dielectric loss in materials, as has been shown in 
many situations [80]. A distinction between 
dipolar contribution and charge carrier contri- 
bution can sometimes be made on the basis of the 
fact that the former is much less strongly tempera- 
ture dependent than the latter. This means that 
one may subtract the loss data obtained at two 
temperatures from one another and the difference 
corresponds to the injected charges at the higher 
temperature. This is shown in Fig. 6 where the 
incremental real and imaginary components of  the 
capacitance show a Kramers-Kronig compatible 
power-law relation with an exponent n = 0.67 
which is typical of charge carrier responses. 

Other examples of the power-law relation being 
found without any sign of loss peaks include ferro- 
electric triglycine sulphate both below and above 
the Curie temperature [81] and ferroelectric 
ceramics of the lead zirconate-niobate type 

[821. 



log(C/F) 

-7  

-8  

-8 
log (G/co F) 

-10 

-5 

I I I l q ~ "  l I �9 

~ ~$$ $ ~  S ~"~*""  s ,  s am . . . . . . - , , -  =n~+ mm 

§ + - ~ L . &  / §  , 

mm + ~ ' -  + + & . m  

~ . . - ' ~  , 

[ o g ( / t a /~ )  " ~ , ' ~ - , . f f 4 ~ p e  .~ 
- - ' m - L  " - ~ +  " o ' . , - > ?  

m a . e ~ +  - �9 . j  
Iw 1 l  -I- + 

log(f/Hz) 
,L I 1 1 I [ I I 

0 5 

Figure 6 The dielectric response 
of a three-layer stearic acid fftim 
between aluminium electrodes 
at three temperatures: (1) 293 K, 
(2) 91K and (3) 325K. The 
upper diagram shows the capaci- 
tance C'(o~), the middle diagram 
the loss G(to)/u~ and the lower 
diagram gives the incremental 
complex capacitance AC'(r 
and AG(co)/oa obtained by sub- 
tracting the 91 K data from the 
325K data. The two straight 
lines are drawn in Kramers- 
Kronig compatible ratio, show- 
ing agreement over seven 
decades of frequency, even 
though the original data show 
some complicating features. 
Taken from Millany and 
Jonscher [89]. 

5 .3 .  F r e q u e n c y  i n d e p e n d e n t  l o w  losses  
It is a general fact that the dielectric loss in rela- 
tively low loss materials tends to become very 
" f la t"  in frequency, as shown in Fig. i ,  corre- 
sponding to the value of  the exponent  n -~ 1. It is 
impossible to distinguish between this and the case 
of  a very flat loss peak, the fact remains that  many 
materials show losses varying by not  more than a 
factor of  3 to 10 over many decades of  frequency. 
While i t  is possible to discern some "fine structure" 
in the form of  slight peaks in the spectrum, there 
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can be no doubt  that  these peaks are superimposed 
on an almost constant background loss. One 
example of  this type of  behaviour is given in Fig. 7 
for a range of  polyethylenes over five decades of  
frequency [83]. Another  very typical  example is 
shown in Fig. 8 where the presence o f  moisture 

gives rise to a very pronounced loss peak which is 
slightly broader than Debye, but  the progressive 

removal of  water molecules leads ul t imately to a 
virtually flat loss [84]. Similar flat loss is found 
in hot-pressed ceramics [85] and in many pure 
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Figure 7 Examples of almost 
frequency independent losses in 
a range of polyethylenes at 
room temperature, covering five 
decades of frequency in the 
audio and radio ranges. The loss 
scale is linear and the variation 
over the frequency range does 
not exceed a factor of two. 
Taken from Reddish [83]. 

2047 



:=L 

120 
c 

o 

.u. 8 0  

ZOO - 
0.Sh . , , . - - tk  

160 

/ / / -  2 , ,  

8pprn 

0 I 
0.1 I frequency (MHz) 10 

I 

lOO 

Figure 8 The effect on dielectric 
loss of successive drying of 
a sample of polyethylene 
quenched in water at 95~ 
with drying times and water 
content indicated. The large 
initial peak due to water mole- 
cules disappears, leaving behind 
a flat loss at the level of 20 to 
40/~ radians. Taken from Ayers 
[84]. 

materials at very low temperatures. In fact, this 
flat loss response is very insensitive to temperature 
and may be regarded as the limit of loss in highly 
pure materials at low temperatures. 

It is our understanding that under no known 
circumstances does the loss in any solid descend 
below the limit of detection of the best equipment, 
while the same is not true of liquids, where "holes" 
of loss are found between successive loss peaks [86]. 

This fiat loss represents a natural limit for 
our power law, Equation 9, wheras it would 
require a very broad and flat distribution of relax- 
ation times to be interpreted in terms of the DRT 

theory. 

5.4.  S t rong  low f r e q u e n c y  dispers ion 
Another limit of the power-law relation, Equation 9, 
is obtained when the exponent n tends to zero so 
that both X'(~) and • show a strong dispersion 
at low frequencies. This behaviour is in complete 
contrast with the situation in which d.c. conduc- 
tivity is present where the real part is constant and 
the loss goes as 1/6~. This type of behaviour is 
found quite generally in dielectric materials in 
which hopping electronic or ionic charge carriers 
are present in appreciable quantities and it has been 
identified as a specific case of  the general power 
law, Equation 9 [87]. It is found in most dielectric 
materials at elevated temperatures, when charge 
motions are encouraged by thermal excitation 
[88], but it may also be seen at very low tempera- 
tures. One example of  this type of behaviour in a 
semiconducting glass may be seen in Fig. 9, another 
is shown in Fig. 10 which refers to the dielectric 

loss of an ionic conductor of the Hollandite struc- 
ture [91 ] in a wide range of temperatures [92]. At 
the lowest frequencies there is a perfect example 
of the power law with n = 0.84, while at the 
highest temperature there is n = 0.07. At inter- 
mediate temperatures a loss peak is superimposed 
on the power-law trend. 

A very similar type of behaviour may be seen 
in some of the examples shown in Fig. 4 in terms 
of the a.c. conductivity, where it is noted that the 
strong low frequency dispersion manifests itself 
as a weakly frequency dependent conductivity, 
other reported examples are in single crystal 
alumina [93], in wet sand [94], in many organic 
materials and, in fact, in most dielectrics at 
sufficiently high temperatures and low frequencies, 
provided that there is a significant density of 
charge carriers [87]. 

It is stressed that this type of dielectric 
response, as well as the fiat low loss behaviour, has 
not been previously recognized as a specific form 
of response; it was being interpreted in terms of 
the Maxwell-Wagner behaviour [31,32] which 
cannot account for the exact power-law relation- 
ship which is being found experimentally. 

It is difficult to be sure whether the observed 
strong low frequency dispersion is a genuine bulk 
phenomenon or whether if is due to interfacial 
processes. One test is the linearity with the ampli- 
tude of the applied voltage, since barrier effects 
would be expected to be non-linear at voltages 
exceeding a few kT/e per barrier. This would also 
lead to a breakdown of Kramers-Kronig relations 
which only apply to linear systems. 
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Figure 9 Low frequency disper- 
sion in a glass doped with Sn 
and Sb oxides, at 800K. The 
slope corresponds to a value of 
the exponent in Equation9, 
n = 0.050 and appears to be 
constant within experimental 
error over seven decades of 
frequency and of loss and 
capacitance. The agreement 
with the Kramers-Kronig com- 
patible ratio cot (nTr/2) is satis- 
factory, in view of the sensitivity 
of this ratio to very small values 
ofn. Taken from Doyle [90]. 

5 . 5 .  T h e  d i e l e c t r i c  r e s p o n s e  o f  p - n  
junctions 

Semiconductor p - n  junctions represent one of the 
most interesting dielectric systems whose study 
may be of considerable importance both from the 
point of view of the theoretical understanding of 
the polarization processes as such and with regard 
to the characterization of p - n  junctions as 
important electronic elements. In particular, p - n  
junctions have two most important advantages as 
vehicles for the advancement of  the understanding 
of dielectric phenomena. Firstly, transistor quality 
semiconductors such as silicon, germanium, gallium 
arsenide and others are among the most perfect 
and best characterized solids in existence, so that 
their physical properties are known with much 
greater precision and certainty than those of 
any other materials. This goes especially for the 
crystalline perfection and for the content of 
impurities present in them, both as a result of 
deliberate doping 'and arising from accidental 
admixtures. Secondly, a junction diode represents 
the only capacitor structure in existence which 

does not require metallic contacts to be made 
directly to the active dielectric region, with the 
resulting uncertainty regarding the precise nature 
of this interface and the various physico-chemical 
reactions that may complicate the interpretation 
of the results obtained. In a typical p - n  junction, 
the "contacts" to the space charge region are made 
by means of the neutral bulk p- and n-regions on 
either side of the space charge region which 
constitutes the proper "dielectric" material. The 
entire structure is a single crystal of high quality 
and there is no question of any interface arising 
between the "dielectric" and the "contact". In 
addition, p - n  junctions have the added advantage 
that the width of the space charge region and 
therefore the capacitance may be adjusted by the 
application of a steady bias superimposed on the 
small signal voltage used for the measurements of 
the dielectric properties. The application of this 
bias alters the occupancy of the deep localized 
levels in the junction and therefore gives the 
opportunity to carry out "electronic doping" of 
the space charge region. 
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In our  exper ience  [49] semiconduc to r  p - n  5 0 K  was seen. However ,  the remarkable feature 

junc t ions  show a remarkable  variety o f  dielectric o f  this behaviour  is that  there is clear evidence o f  

responses: an a lmost  Debye-l ike loss in a high only  one loss peak in all those diodes over a 

pur i ty  silicon diode,  s trongly asymmetr ic  p e a k s o f  f requency  range o f  nearly ten  decades after 

the  type  shown in Fig. 11 in b o t h  a silicon and a normal iza t ion  for tempera ture .  This should be 

GaA1As/GaAs he te ro junc t ion  laser d iode ,  and in cont ras ted  wi th  the presence o f  three loss peaks 

the la t ter  an a lmost  " f l a t "  response at a round in a si l icon diode which had been irradiated with  
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Figure 11 The dielectric loss of a 
silicon p - n  junction, normalized at 
several temperatures indicated on 
the locus of the displacement point. 
At low frequencies and high tem- 
peratures d.c. conduction dominates 
the response, the dielectric behav- 
iour is characterized by a single loss 
peak with a very small value of the 
exponent m =  0.18 and a much 
larger values of (1 - -n)  = 0.58. The 
x'(to) plot is displaced vertically for 
clarity and the chain-dotted line 
indicates the proper position of the 
Kramers-Kronig transformed loss 
peak. The activation energies are 
shown. Note that the effective 
frequency range covers ten decades 
and no other loss mechanism is 
visible [49]. 
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Figure 12 The normalized data for 
the dielectric loss of a silicon p -n  
junction irradiated with 0.72MeV 
electrons, showing three distinct loss 
peaks with the activation energies 
indicated. The normalization was 
carried out with respect to the peaks 
and, in view of the different acti- 
vation energies, the fit of points 
between the peaks is not so good. 
The low frequency response is domi- 
nated by d.c. conduction. Note that 
the total effective frequency range 
covers over thirteen decades [49 ]. 

0.7MeV electrons, as shown in Fig. 12. The 

activation energies obtained from the dielectric 

measurements agree well with those determined 
by other methods. 

5 . 6 .  D i e l e c t r i c s  a t  v e r y  l o w  t e m p e r a t u r e s  

I t  is an e x p e r i m e n t a l  f a c t  t h a t  the  d ie lec t r i c  

response persists down to the lowest temperatures; 

certainly well below 4 K and measurements exist 

down to the milliKelvin range. In this respect the 

dynamic response differs essentially from most 

forms of steady state current flow, except pure 
tunnelling of electrons across potential barriers a 

few nanometres wide. Several examples of dielectric 

loss at cryogenic temperatures [54-57 ,  59, 60] 

have already been mentioned where the frequency 
dependence showed the whole range of response 
types from the "flat" behaviour characteristic of 
low loss materials, to sharply defined near-Debye 
peaks. Here it is proposed that an example of a 
similar Hollandite material [92] as shown in Fig. 10 
but  taken to lower temperatures [95] is discussed. 
Fig. 13 shows that the response remains virtually 

independent of temperature between 77 and 

5.2 K and the loss follows the power law with 
n = 0.93 over more than five decades, while at the 
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Figure 13 The frequency depen- 
dence of the real and imaginary 
components of the complex di- 
electric permittivity of the ionic 
conductor K1.6Mgo.sTiT.~O16 in 
log-log representation, with 
temperature as parameter. The 
symbols for the lowest four 
temperatures are X 77 K, o 60 K, 
�9 30 K, ~ 5.2 K. The other curves 
are annotated [95 ]. 
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lower frequencies there is clear evidence of strong 
dispersion, with the real part e'(co) showing the 
concomitant rise which proves that this is not the 
case of d.c. conductivity, which would have been 
very unlikely in an ionic conductor at these tem- 
peratures. The importance of this experimental 
evidence lies in the fact that a high level of dielectric 
activity persists down to the lowest temperatures, 
even in the case of ionic materials in which con- 
ventional tunnelling is impossible. 

6. The formulation of the "Universal" law 
It has been shown that the totality of dielectric 
responses of all materials falls into the broad class 
of power-law relations for the dielectric loss given 
by Equations 5 to 7 and this power-law relation- 
ship is called the "Universal law" of the dielectric 
response, since it is found quite regardless of [5] : 

Physical structure - single-crystal, polycrystal- 
line, amorphous and glassy; 

Types of bonding - covalent, ionic, molecular; 
Chemical type - organic, inorganic, biological; 
Polarizing species - dipoles, hopping electrons, 

polarons, ions; 
Geometrical configurations- from "bulk" di- 

mensions to monomolecular layers, planar and intri- 
cate geometries, continuous and granular media; 

A very wide range of temperatures - from the 
lowest attainable to the highest compatible with 
the stability of the materials in question. 

This universality of the power-law response 
constitutes the strongest argument for the pursuit 
of our alternative approach to the interpretation 
of the dielectric behaviour of solids; it is just too 
difficult to envisage that any or all of the classical 
explanations should always give the same "magic" 
form of relationship. 

It is now noted that all these different materials 
obeying the universal relation satisfy two extremely 
general criteria relating to the motions of the 
polarizing species in them [96-98]:  

(i) The dipoles or charges responsible for the 
polarization execute sudden hopping or jumping 
transitions between preferred orientations or sites. 
The time scale of these transitions is very rapid 
in comparison with all other processes taking place 
in the material, in particular with the externally 
applied variable fields. The nature of these tran- 
sitions is completely different from the "slow" 
motions of Debye dipoles in a viscous medium. 

(ii) Any sudden transition of an individual 
dipole or charge excites a much slower delayed 
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Figure 14 The response funct ion f ( t )  for  the Debye 
process and for the "universal" response with the same 
loss peak frequency COp. In both cases tOp is given by the 
reciprocal time at which the logarithmic slope goes 
through the value -- 1. While the entire Debye loss peak 
is generated by a single exponential process in time, the 
universal peak requires two separate sequential processes. 
Strong low frequency dispersion shown by the dotted line 
corresponds to a negative exponent m in the second 
power law, Equation 11. 

response of the totality of neighbouring dipoles 
or charges through co-operative many-body 
interactions. 

This division of the medium into s l o w  and f a s t  

responders will be seen to be of fundamental 
significance to the new interpretation of the 
physical nature of the dielectric response. 

The contrast between the classical Debye mech- 
anism and the proposed many-body responses is 
further enhanced by considering the nature of the 
time-domain response corresponding to the 
frequency-domain behaviour given by Equation 5. 
This may be described by two power laws, as 
shown in Fig. 14: 

f ( t )  ~ t - n  for t < 1/6o. (10) 
and 

f ( t )  ~ t - 1 - m  for t > 1/6%. (11) 

These two laws correspond to two sequential 
physical processes which are different from one 
another and independent, in view of the infor- 
mation contained in Fig. 3. This is a completely 
different concept of the significance of the loss 
peak in the frequency domain, by contrast with 
the classical Debye approach in which the loss 
peaks correspond to some "principal" mechanism 
in a distribution [99]. 



It is noted, furthermore, that the power law 
of Equation 10 has the unique feature that its 
Fourier transform into the frequency domain is 

x( o) (i o) "-1 

= {sin (mr/2) -- i cos (mr/2)}w "-1 

(12) 

so that the real and imaginary components have 
the same frequency dependence, in complete 
contrast with the Debye response. This implies 
the independence of frequency of the ratio 

• energy lost per radian 
- = c o t  (mr~2) 

• energy stored 
(13) 

in the frequency range in which this law is appli- 
cable, as shown in several of the experimental 
diagrams reproduced here. 

The immediate physical significance of the 
energy relation (Equation13) is that every 
individual dipolar or charge transition altering 
the dielectric polarization entails a finite energy 
loss, regardless of the rate of change of the polar- 
ization under the action of the sinusoidal applied 
field. This leads to the constant phase angle 
between polarization and field, independently of 
frequency, in complete contrast with the constant 
time delay, v, postulated in the Debye model. 

7. The many-body model 
The intuitive predictions of the early papers 
relating to the many-body nature of the dielectric 
response [96-99]  were confirmed and considerably 
extended by subsequent developments of a much 
more rigorous and quantitative theory. The first 
of these proposed the analogy with the well- 
known concept of infra-red divergence [35] which 
is characterized by the same power-law depen- 
dence as Equation 10. This model made direct 
reference to the general criteria (i) and (ii) out- 
lined above and it provided the first basis for a 
completely new approach to the interpretation 
of the universal dielectric response. Further 
development of these ideas, including the treat- 
ment of the two independent mechanisms which 
are present wherever there is a loss peak or a 
strong low frequency dispersion, were provided by 
the work of Dissado and Hill [100-102],  referred 
to as D and H. The principal concept in this theory 
is the existence of correlated states which arise 
from interactions between individual dipoles or 
charges in an interactive system. These states form 

o 

d 

A 

Figure 15 The potential energy diagram of a many-body 
two-level system, representing the energy of a large 
number of individual interacting systems. The potential 
wells correspond to preferred orientations for dipoles or 
positions for hopping charges. The shaded regions at the 
bottom of the wells represent correlated states of width 
2~'. The arrows a and a' denote thermally-assisted tran- 
sitions in which a significant amount of energy is 
exchanged with the phonons. Arrows b and c denote 
configurational tunnelling transitions of the "flip" and 
"ffip-flop" types, respectively. 

a narrow band in energy, much narrower than the 
thermal energy k T  at room temperature, and they 
are half-filled. The excitation of these states can 
take place only through the action of the sudden 
changes of potential resulting from dipolar or 
charge transitions characterizing the dielectric 
behaviour of solids. Excitations of the correlated 
states are capable of storing a considerable amount 
of energy, which is only slowly released to the 
system, part of it being lost in the process. 

The collective system may be represented 
schematically by the energy diagram of Fig. 15 
in which the two potential wells correspond to 
the preferred orientations of the system and the 
total polarization is determined by the relative 
occupancies of the two wells. Dissado and Hill 
distinguish three types of transitions between the 
wells denoted by the arrows a, b and c. Transition 
a corresponds to the classical thermally-excited 
transition of a single particle from one well to the 
other and this is the transition which would be 
involved in the classical Debye process. The particle 
in question makes a "large" transition involving 
typically an interatomic spacing, the relevant 
energy A being of the order of 1 eV. By contrast, 
Transitions b and c do not involve any thermal 
excitation and they correspond to configurational 
tunnelling in which large numbers of  interacting 
particles undergo small adjustments which collec- 
tively give the result of a large transition of a single 
particle. Configurational tunnelling becomes easier, 
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Figure 16 Schematic illustration of (a) "large" and 
(b) "small" transitions with the corresponding changes 
in the dipole moment shown by arrows. Detailed 
discussion in the text. 

the more disordered is the system in question and 
it has been shown that all dielectrics involving 
orientational polarizations due to charges or 
dipoles are necessarily disordered [102]. A very 
important property of configurational tunnelling is 
the fact that it may involve very heavy-particles 
such as ions and dipoles and it is therefore not 
confined to the very light electrons. 

The principle of configurational tunnelling 
leading to a change of the dipole moment in a 
system of interacting particles is illustrated by the 
simple diagram of Fig. 16 relating to a hypothetical 
one-dimensional lattice. Fig. 16a refers to the 
situation in which oppositely charged ions occupy 
"regular" positions in the lattice but one ion is 
missing leaving a vacancy with a resulting net 
dipole moment, defined as the difference in the 
centres of gravity of the relevant distributions of 
the positive and negative ions. This dipole moment 
is indicated by the upper arrow. If this vacancy is 
now filled by transferring the nearest like ion by 
means of a "large" transition over the restraining 
potential barrier, the dipole moment is reversed as 
indicated by the lower arrow. This large ionic 
transition is 'equivalent to a dipolar rotation which 
also requires a thermal excitation to overcome the 
barriers preventing free rotation in solids. 

Fig. 16b shows a fully occupied but slightly 
"disordered" lattice in which the  oppositely 
charged ions have been slightly displaced in 
opposite senses from their regular positions in 
Fig. 16a. This corresponds to a finite net dipole 
moment, as indicated by the upper arrow. If now 
all the ions were to be translated by small amounts 
to equivalent sites on the opposite side of their 
respective regular positions, the sum of all these 

small transitions would amount to a change of 
dipole moment of the same order of magnitude 
as the single large transition in Fig. 16a. The 
essential point is that these small transition do not 
require as much thermal energy as the large 
transitions and they may occur even without any 
thermal excitation; hence the term configurational 
tunnelling. 

In Fig. 15, Transitions b are denoted as "flip" 
transitions and they change the total dipole 
moment of the system with the characteristic 
time dependence given by Equation 10 and they 
dominate the response at "short" times, storing 
the energy in the excitations of the correlated 
states, denoted in the diagram by the shaded 
regions near the bottoms of the wells. After the 
lapse of a sufficiently long time, the other type 
of configurational tunnelling sets in, denoted by 
the arrow c and involving "flip-flop" interactions, 
in which synchronous configurational tunnelling 
transitions occur in opposite senses at different 
spatial positions, leaving the total dipole moment 
unchanged. Because of the resulting excitations 
of the correlated states, however, the fiip-flop 
transitions do affect the rates of the momentum- 
changing flip transitions and of the thermally- 
excited large transitions, giving the final power 
law of decay of Equation 11. 

Mechanisms a and b occur in parallel, while c 
competes with b and a detailed analysis by D and H 
shows the following form of the time dependence 
of the depolarization current 

i(t) = exp (-- cop t) t l  n 1F1(1 -- m; 2 -- n; cop t) 

F(1 + m -- 12) 
x (14) 

P(2 --n)P(1 + m ) '  

where 1F1 ( ; ; ) is the confluent hypergeometric 
function and P is the Gamma function. The Fourier 
transform of this relation gives the following 
expression for the complex dielectric susceptibility 

X(co) = A"  G(co/cop), (15) 

where A is an amplitude factor defining the 
strength of the dielectric response in unit electric 
field and is given by 

n ( 2 ) ( ~ ) - n N d ( M ' ( O ) / )  A = cop cos E 

F(1 + m - -n)  
X 

(1 - -n ) r (1  + m) 
(16) 
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while G(co/cop)is the spectral shape factor of the 
reduced frequency co/cop 

G(co/cop) - co~-" 
(cop + ico) ~- "  

x2F1 1 - - n , l - - m ; 2 - - n ;  ~ i  ' 
cop 

(17) 

where 2F1 ( ; ; ;) is the Gaussian hypergeometric 
function and M'(O)/E is the static deviation linear- 
ized per unit of electric field, N is the number of 
dipoles per unit volume and d is their length. 

The ability to express the susceptibility as a 
product of an amplitude factor and a shape factor 
constitutes the theoretical justification for the 
widely used process of normalization of dielectric 
data with temperature, or pressure, as the variable 
parameter. This justification did not exist explicitly 
in the older theories and it is very gratifying to be 
able to obtain it from a very general theory. The 
applicability of normalization to any given material 
depends, of course, on the m and n values not 
changing appreciably with temperature: if this is 
satisfied, then we refer to "time-temperature 
superposition". It has been seen that in many cases 
this condition is sufficiently well satisfied to 
provide very good normalization, while in others 
this is not true [38], this point will be discussed in 
more detail later. 

The D and H theory gives an explicit formula 
for the loss peak frequency which enters into the 
general expressions, Equations 14 and 15, 

co(T) = ~2. exp (-- A/kT)h(T) ,  (17) 

where h(T) is a function of temperature which 
may not be very rapidly varying, so that the loss 
peak frequency is essentially thermally activated 
with the energy A of the barrier in the double well 
in Fig. 15, as found in Equation 2. 

The general theoretical expressions, Equations 
14 and 17, may now be evaluated in certain 
limiting cases in terms of simple functions. It 
turns out that the following relations apply: 

f ( t )  ~ t - "  for t < co~I; (18) 

f( t)  cc exp (-- cop t) for t m 6o~1; (19) 

f ( t )  ~ t -m-~  for t >~ co~I; (20) 

where we have set i ( t ) = f ( t )  to bring out the 
similarity with our earlier expressions in terms of 
the dielectric response function. 

Equation 18 is exactly the empirically derived 
Equation 10, while Equation 20 is the empirically 
derived Equation 11. To that extent, therefore, 
the theory gives a complete account of the exper- 
imentally determined universal laws of dielectric 
behaviour. What is equally significant, however, is 
the fact that the theory gives, through Equation 19, 
a region of Debye-like exponential behaviour near 
the loss peak frequency. This preserves, therefore, 
the significance of the loss peak frequency in 
terms of Debye-like processes which has long 
been regarded as the cornerstone of the classical 
interpretation of the dielectric response. 

The limiting forms of the frequency-domain 
response are similarly obtained as follows in terms 
of the dielectric loss spectrum 

X'(co) o: x(O ) -- aco m, 
1 for co ~ cop, (21) 

X"(co) ~ corn ) 

1 
• oc for co "~ cop, (22) 

1 + ico/cop 

X(co) oc (/co)n-1 for co >~ cop, (23) 

which are exactly the expressions found empirically, 
with, once again, the exception that the region 
"between the two power taws is identified with a 
Debye-like response near the dielectric loss peak". 

The point of fundamental significance in this 
new approach to the interpretation of dielectric 
relaxation is the fact that the power-law time 
dependence and the corresponding frequency 
dependence which were so clearly established 
experimentally as the universal form of response, 
are direct and natural manifestations of the type 
of many-body interactions which are being 
described here. Given the ubiquitous presence of 
power-law relations, there is no other evident way 
in which one can envisage the interpretation on the 
basis of physically plausible assumptions. The 
complete description of the time-domain response 
of Fig. 14 or the corresponding generalized loss 
peaks shown in Figs 1 and 2 follow directly from 
the interplay of the three types of processes a, b 
and c in Fig. 15. The many-body processes 
described as flip transitions determine the early 
stages of the time response or the high frequency 
side of the loss peak, the flip-flop transitions 
determine the long time responses or the low 
frequency side of the loss peak. The "large" 
thermally-assisted transitions a, which by them- 
selves would give the Debye response, retain their 
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vital role in the new analysis, providing the "hinge" 
or link between the power-law processes and 
dominating the response in the transition region. 
This result, following directly from the complete 
analysis of Dissado and Hill, preserves the link 
with the traditional interpretation of the dielectric 
loss peaks in terms of Debye-like processes while 
explaining the modified shape of the loss peaks 
away from the loss peak frequency 6%. 

8. Discussion of the many-body analysis 
8.1. The nature of the many-body 

interaction 
One of the difficulties of presenting the many- 
body interactions is the essentially unfamiliarity 
of this concept and the lack of direct sense- 
perception experience from daily life of many- 
body systems. This means that any models that 
inay be constructed and on which our physical 
intuition relies for a deeper understanding of the 
processes involved in dielectric relaxation are 
necessarily of very limited validity. In this respect 
the classical "ball-and-stick" models of vibrating 
molecular bonds or turning polymeric crank-shafts 
are much more appealing to the imagination and 
it takes a considerable intellectual effort to place 
oneself in the essentially unfamiliar framework of 
many-body interactions. Many of the concepts 
involved are much more easily understood in 
terms of the abstract ideas derived from the 
quantum mechanical theoretical analysis than in 
terms of more pictorial representation. However, 
we should make at least some attempts to render 
the new concepts acceptable to the practically 
oriented minds without taking in the whole 
theoretical complexity of the general model. 

The first useful concept t o  be developed is the 
idea that in an interactive system "nothing can 
move without everything else moving as well". 
It is helpful to note here that at least one essen- 
tially many-body system which has attained 
sufficient familiarity to have become acceptable 
without undue difficulty are gaseous plasmas, and 
particularly the phenomen of plasma oscillations. 
Another closely related concept is the screened 
Coulomb potential, which requires a self-consistent 
solution to be obtained taking into account the 
interaction between potential and charge carriers. 

Another important point is that many-body 
interactions involve low energies and very large 
numbers of particles. This means that the corre- 
lated states involved in our analysis represent a 

band of very large density but covering a small 
energy, of the order of a few millivolts. This band 
does not "fit" into the familiar band model of 
solids, since that model is, by definition, a one- 
particle model which does not contain the corre- 
lated states any more than it does the plasmon 
excitations. While one-particle states, such as those 
describing electrons and holes in the band model, 
relate to motions of individual particles, and the 
energies in question are typically of the order of 
electron-volts, the correlated states describe the 
motions of centroids of particle assemblies and 
their energies are much lower. 

8.2. The magnitude of the exponents 
m and n 

It was found empirically that the exponents m 
and n fall in the range between zero and one and 
this has its direct significance in the present 
theory. It is found that these exponents relate 
to the degree of correlation between the flip-flop 
processes and the flip processes, respectively. In 
both cases, fully correlated transitions correspond 
to the higher value of unity, completely uncorre- 
lated transitions correspond to the exponents zero. 

The concept of the degree of correlation is 
closely related to the degree of order in the system. 
The higher the state of perfection, the more 
difficult it is to see weakly correlated motions, 
since perfect order does not admit of any motion 
without ensuing "domino reactions". On the other 
hand, the less perfect the system, the easier it is 
for an uncorrelated event to take place without 
correlated events following in its wake. This means 
that the exponent n would be expected to increase, 
i.e. the response beyond the loss peak frequency 
to become flatter as order increases, e.g. as the 
temperature decreases. This would also explain 
why the behaviour of liquids, in which the corre- 
lations are largely destroyed because of the rapid 
fluctuations of structure, approaches that of the 
Debye model, with the exponent n -+ 0. 

The situation is more complicated with flip-flop 
transitions, since these involve two simultaneous 
events taking place and this means that a highly 
ordered system with strong flip correlations has 
very weakly correlated flip-flops, and vice versa. 
Thus small values of rn go with large values of 
n and vice versa, but it should be remembered 
that the limit of vanishing flip-flop interactions 
corresponds to a frequency dependence of loss 
X"(co) cc 6o, i.e. it appears as if m = 1. The latter 
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Figure 17 The effect of temperature on the loss spectrum 
in a dipolar material, as a consequence of changing corre- 
lation of flips and flip-flops. The nonqnteracting Debye 
response is shown as a singular case. This diagram relates 
to the shape of the spectral distribution, its amplitude 
may change in a different manner, e.g. it may decrease 
with decreasing temperature, according to the strength of 
the thermally-assisted transition. 

situation arises in those cases where the loss peak 
frequency 6% is higher than 108 to 10 9 Hz, since 
under these conditions the flip-flop interactions do 
not have time to develop and these cases corres- 
pond to the points on the top side of the square in 
Fig. 3, which all fall in that frequency range. 

The effect of increasing temperature on the 
form of the shape function is therefore expected 
to be as shown schematically in Fig. 17, giving 
rise to a narrowing of the peak with increasing 
temperature. However, it should be noted that 
experience shows that there are many dielectric 
materials in which the shape of the peak is remark- 
ably independent of temperature, indicating that 
the short-range order and interactions are not 
strongly affected by temperature. 

8.3. Dielectric responses at very low 
temperatures 

The co-operative tunnelling model provides a very 
natural explanation of the dielectric loss remaining 
f'mite at temperatures in the cryogenic range, 
down to milliKelvins, even in situations where the 
dielectrically active species are sufficiently heavy, 
e.g. K § ions, to make quantum mechanical one- 
particle tunnelling completely unlikely. One form 
of low temperature response is the "fiat" loss 
already mentioned, without any "large" transition 
being involved in view of the absence of thermal 
excitations to provide the required energy. 
However, it is often observed that a loss peak is 
preserved down to the lowest temperatures [103] 
although its temperature dependence is not 
exponentially activated. In these cases we have to 

consider the presence of non-activated electronic 
or protonic tunnelling and these are very likely to 
account for the many examples of this behaviour, 
although the behaviour of loss away from the 
loss peak region may be modified by many-body 
interactions in the usual way. 

8.4. S t rong low f r e q u e n c y  dispersion 
The many-body theory of this very interesting 
type of behaviour is not yet completely developed 
at the present time but it is noted that this 
response is obtained formally from the loss peak 
expression below the loss peak frequency, 
Equation 21, by setting m = - -p ,  with X'(~o) and 
X"(co) maintaining the Kramers-Kronig deter- 
mined ratio, tan (prr/2)>> 1. Mathematically this 
transformation may be derived if the •p-flop 
transitions should aid the flips instead of competing 
with them as in the dipolar case. It is believed that 
this is the case in hopping systems, in which the 
strong low frequency dispersion is observed and 
it is expected that theory may be adapted to this 
situation without much difficulty. 

8.5. The  dielectric response of  p - n  
junc t ions  

The dielectric behaviour of p - n  junctions is of 
particular interest in the present context, since 
their response follows very closely that of other 
dipolar systems, while the physical mechanisms 
involved are completely different; there are no 
dipolar species in the space charge regions of p - n  
junctions and the dielectric loss is caused essen- 
tially by generation/recombination processes. The 
inference drawn is that these processes must also 
obey the power-law devolution in time, despite the 
fact that they do not involve two4evel dipole4ike 
alignments. 

8.6. Relaxation as a solut ion of a 
differential equation 

The point is sometimes made that a physically 
meaningful solution of the relaxation problem 
should represent the solution of a "simple" differ- 
ential equation or an equally evident extension of 
one. This is the case with the Debye mechanism 
which corresponds to the solution of a first-order 
differential equation, while the DRT corresponds 
to an integral transform of the Debye solution. 
Now it is not evident that this limitation of the 
validity of a physically admissible solution should 
be justified on any fundamental grounds, especially 
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when the physical situation corresponds to a many- 
body system. 

9. Conclusions 
This concludes the present,, necessarily very 
limited, account of the new theory of the dielectric 
relaxation in solids. It was started with a detailed 
description of the nature of the experimental 
results in order to convince the reader that they 
warrant a serious fresh approach to the otherwise 
very old subject of dielectric response. We regard 
the remarkable universality of the response as 
conclusive proof that a common mechanism is 
responsible for the relaxation and that' this mech- 
anism is not of the Debye type: By focussing 
attention on the essential characteristics of all 
condensed matter, and especially of solids, namely 
the discontinuous nature of dipolar and charge 
transitions, and the inevitable interactions between 
the individual dipoles or charges, it was possible 
to develop a completely new approach to the 
theory of interactive systems which is in remar- 
able agreement with a very wide range of exper- 
imental data not otherwise easily understand- 
able in terms of conventionally accepted models. 
Although a good deal more remains to be done 
on the new theoretical model, it may be said 
already now that the fundamental outline is 
sufficiently well developed to give us a firm 
basis for the assessment of the true nature of 
the dielectric response. Thus a very important 
stage in the understanding of the dielectric stage 
has been reached. 

Having established the proposition that the 
entire range of dielectric behaviour may be 
explained in terms of many-body interactions 
without recourse to distributions of relaxation 
times, the question has to be asked whether real 
dielectric systems show any evidence of the 
existence of several relaxation times for the 
"large" transitions of the type a in Fig. 15. A large 
body of experimental and theoretical evidence, 
developed over the years to underpin the DRT 
theories, strongly suggests that activated processes 
exist which have different relaxation times. Our 
comment to this is that, quite evidently, there are 
many examples of dielectric behaviour with more 
than one loss peak in evidence and that this is the 
result of the presence of more than one activated 
process. There are also examples of dielectric 
response in which a "fine structure" is present 
on an otherwise very broad loss characteristic 
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following the universal law and similar arguments 
apply there. 

It remains a fact, however, that very many 
loss peaks show no evidence of a multiplicity 
of contributing mechanisms, being very well 
represented by the empirical relation, Equation 5, 
over many decades of frequency. If subsidiary 
thermally-activated transitions exist there, their 
presence is very effectively masked by the "wings" 
of the universal processes and it is concluded 
that the available experimental evidence offers no 
support for the presence of large distributions 
of relaxation times as the primary cause of the 
dielectric response. It is concluded, therefore, that 
although the existence of different thermally- 
activated processes cannot be ruled out, exper- 
imental evidence for their effective role in causing 
the dielectric relaxation in solids is very limited. 

This does not exclude the possibility that 
the dominant thermal mechanisms responsible 
for the appearance of individual loss peaks are not 
themselves composed of a relatively narrow distri- 
bution of processes; the available experimental 
evidence is insufficiently sensitive to enable us to 
distinguish between a single mechanism and two or 
three closely spaced mechanisms. 

This review is concluded by mentioning the 
highly significant fact that the dielectric response 
represents but one facet of a very much wider class 
of time-dependent relaxation phenomena involv- 
ing many-body interactions. It so happens that the 
experimental material at our disposal is very much 
richer in dielectrics than in these other branches, 
e.g. in mechanical and magnetic relaxation, in 
nuclear magnetic resonance and optical absorption, 
so that the development of the necessary theory 
was best achieved on the basis of the dielectric data. 
However, now that this development has been 
made, it can be applied very successfully to these 
other branches and it is hoped that significant 
advances will be seen there. 
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